2,206 research outputs found

    What pops out in positional priming of pop-out: insights from event-related EEG lateralizations

    Get PDF
    It is well established that, in visual pop-out search, reaction time (RT) performance is influenced by cross-trial repetitions versus changes of target-defining attributes. One instance of this is referred to as “positional priming of pop-out” (pPoP; Maljkovic and Nakayama, 1996). In positional PoP paradigms, the processing of the current target is examined depending on whether it occurs at the previous target or a previous distractor location, relative to a previously empty location (“neutral” baseline), permitting target facilitation and distractor inhibition to be dissociated. The present study combined RT measures with specific sensory- and motor-driven event-related lateralizations to track the time course of four distinct processing levels as a function of the target’s position across consecutive trials. The results showed that, relative to targets at previous target and “neutral” locations, the appearance of a target at a previous distractor location was associated with a delayed build-up of the posterior contralateral negativity wave, indicating that distractor positions are suppressed at early stages of visual processing. By contrast, presentation of a target at a previous target, relative to “neutral” and distractor locations, modulated the elicitation of the subsequent stimulus-locked lateralized readiness potential wave, indicating that post-selective response selection is facilitated if the target occurred at the same position as on the previous trial. Overall, the results of present study provide electrophysiological evidence for the idea that target location priming (RT benefits) does not originate from an enhanced coding of target saliency at repeated (target) locations; instead, they arise (near-) exclusively from processing levels subsequent to focal-attentional target selection

    A γ\gamma-ray determination of the Universe's star-formation history

    Full text link
    The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for γ\gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant γ\gamma-ray sources. We measure this attenuation using {739} active galaxies and one gamma-ray burst detected by the {\it Fermi} Large Area Telescope. This allows us to reconstruct the evolution of the EBL and determine the star-formation history of the Universe over 90\% of cosmic time. Our star-formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z2z\sim2. Upper limits of the EBL at the epoch of re-ionization suggest a turnover in the abundance of faint galaxies at z6z\sim 6.Comment: Published on Science. This is the authors' version of the manuscrip

    Prognosis after high-dose chemotherapy followed by autologous stem-cell transplantation as first-line treatment in primary CNS lymphoma—a long-term follow-up study

    Get PDF
    Background High-dose chemotherapy followed by autologous stem-cell transplantation (HCT-ASCT) is a promising approach in eligible patients with primary central nervous system lymphoma (PCNSL). We report long-term data of patients who were treated according to HCT-ASCT containing protocols. Patients and methods We analyzed survival and relapse rates in 43 (<67 years) immunocompetent patients with newly diagnosed PCNSL being treated according to two different high-dose methotrexate-based protocols followed by high-dose carmustine/thiotepa (BCNU/TT) plus ASCT (±whole brain irradiation). Analysis was conducted for all patients (intention-to-treat) and those patients who actually received HCT-ASCT (per-protocol). Results Thirty-four patients achieved complete remission, of those 12 relapsed (35%), while 6 of them relapsed 5 years after diagnosis. After a median follow-up of 120 months, median overall survival (OS) was reached after 104 months. Two- and 5-year OS was 81% and 70% and 2- and 5-year event-free survival (EFS) was 81% and 67%, respectively. In per-protocol analysis (N=34), 5-year OS and EFS was 82% and 79%, respectively. HCT-ASCT associated related mortality was not observed. Conclusions Sequential high-dose MTX containing chemotherapy followed by high-dose carmustine/thiotepa plus ASCT (±whole brain irradiation) is safe and leads to high survival rates in eligible patients with newly diagnosed PCNS

    Distinctive correspondence between separable visual attention functions and intrinsic brain networks

    Get PDF
    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity

    Event-related electroencephalographic lateralizations mark individual differences in spatial and nonspatial visual selection

    Get PDF
    Selective attention controls the distribution of our visual sys- tem's limited processing resources to stimuli in the visual field. Two independent parameters of visual selection can be quantified by modeling an individual's performance in a partial-report task based on the computational theory of visual attention (TVA): (i) top-down control α, the relative attentional weight- ing of relevant over irrelevant stimuli, and (ii) spatial bias wλ, the relative attentional weighting of stimuli in the left versus right hemifield. In this study, we found that visual event-related electroencephalographic lateralizations marked interindividual differences in these two functions. First, individuals with better top-down control showed higher amplitudes of the posterior contralateral negativity than individuals with poorer top-down control. Second, differences in spatial bias were reflected in asymmetries in earlier visual event-related lateralizations de- pending on the hemifield position of targets; specifically, individuals showed a positivity contralateral to targets presented in their prioritized hemifield and a negativity contralateral to targets presented in their nonprioritized hemifield. Thus, our findings demonstrate that two functionally different aspects of attentional weighting quantified in the respective TVA parameters are reflected in two different neurophysiological measures: The observer-dependent spatial bias influences selection by a bottom-up processing advantage of stimuli appearing in the prioritized hemifield. By contrast, task-related target selection governed by top-down control involves active enhancement of target, and/or suppression of distractor, processing. These results confirm basic assumptions of the TVA framework, complement the functional interpretation of event-related lateralization components in selective attention studies, and are of relevance for the development of neurocognitive attentional assessment procedures

    A significant hardening and rising shape detected in the MeV/GeV nuFnu spectrum from the recently-discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    Get PDF
    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, E>E> 100 GeV) blazar S4 0954+65 (z=0.368z=0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ\gamma-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8±0.11.8 \pm 0.1---compared with the 3FGL value (averaged over four years of observation) of 2.34±0.042.34 \pm 0.04. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of 1.72±0.081.72 \pm 0.08 (compared with 1.38±0.031.38 \pm 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1<1 day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of 1.0×106\gtrsim 1.0 \times 10^{-6} photons cm2^{-2} s1^{-1} (E>E> 100 MeV) and a hard spectral index of ΓGeV<2.0\Gamma_{\rm GeV} < 2.0 detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.Comment: 15 pages, 3 figures, 2 tables. Accepted by PAS

    Optical Spectral Variability of the Very-High-Energy Gamma-Ray Blazar 1ES 1011+496

    Full text link
    We present results of five years of optical (UBVRI) observations of the very-high-energy gamma-ray blazar 1ES 1011+496 at the MDM Observatory. We calibrated UBVRI magnitudes of five comparison stars in the field of the object. Most of our observations were done during moderately faint states of 1ES 1011+496 with R > 15.0. The light curves exhibit moderate, closely correlated variability in all optical wavebands on time scales of a few days. A cross-correlation analysis between optical bands does not show significant evidence for time lags. We find a positive correlation (Pearson's r = 0.57; probability of non-correlation P(>r) ~ 4e-8) between the R-band magnitude and the B - R color index, indicating a bluer-when-brighter trend. Snap-shot optical spectral energy distributions (SEDs) exhibit a peak within the optical regime, typically between the V and B bands. We find a strong (r = 0.78; probability of non-correlation P (>r) ~ 1e-15) positive correlation between the peak flux and the peak frequency, best fit by a relation νFνpkνpkk\nu F_{\nu}^{\rm pk} \propto \nu_{\rm pk}^k with k = 2.05 +/- 0.17. Such a correlation is consistent with the optical (synchrotron) variability of 1ES 1011+496 being primarily driven by changes in the magnetic field.Comment: Accepted for publication in ApJ. 16 pages, including 7 figure

    E.U. paediatric MOG consortium consensus: Part 2 - Neuroimaging features of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders.

    Get PDF
    Imaging plays a crucial role in differentiating the spectrum of paediatric acquired demyelinating syndromes (ADS), which apart from myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) includes paediatric multiple sclerosis (MS), aquaporin-4 antibody neuromyelitis optica spectrum disorders (NMOSD) and unclassified patients with both monophasic and relapsing ADS. In contrast to the imaging characteristics of children with MS, children with MOGAD present with diverse imaging patterns which correlate with the main demyelinating phenotypes as well as age at presentation. In this review we describe the common neuroradiological features of children with MOGAD such as acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, AQP4 negative NMOSD. In addition, we report newly recognized presentations also associated with MOG-ab such as the 'leukodystophy-like' phenotype and autoimmune encephalitis with predominant involvement of cortical and deep grey matter structures. We further delineate the features, which may help to distinguish MOGAD from other ADS and discuss the future role of MR-imaging in regards to treatment decisions and prognosis in children with MOGAD. Finally, we propose an MRI protocol for routine examination and discuss new imaging techniques, which may help to better understand the neurobiology of MOGAD
    corecore